Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Nature ; 628(8008): 620-629, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509369

ABSTRACT

Epstein-Barr virus (EBV) infection can engender severe B cell lymphoproliferative diseases1,2. The primary infection is often asymptomatic or causes infectious mononucleosis (IM), a self-limiting lymphoproliferative disorder3. Selective vulnerability to EBV has been reported in association with inherited mutations impairing T cell immunity to EBV4. Here we report biallelic loss-of-function variants in IL27RA that underlie an acute and severe primary EBV infection with a nevertheless favourable outcome requiring a minimal treatment. One mutant allele (rs201107107) was enriched in the Finnish population (minor allele frequency = 0.0068) and carried a high risk of severe infectious mononucleosis when homozygous. IL27RA encodes the IL-27 receptor alpha subunit5,6. In the absence of IL-27RA, phosphorylation of STAT1 and STAT3 by IL-27 is abolished in T cells. In in vitro studies, IL-27 exerts a synergistic effect on T-cell-receptor-dependent T cell proliferation7 that is deficient in cells from the patients, leading to impaired expansion of potent anti-EBV effector cytotoxic CD8+ T cells. IL-27 is produced by EBV-infected B lymphocytes and an IL-27RA-IL-27 autocrine loop is required for the maintenance of EBV-transformed B cells. This potentially explains the eventual favourable outcome of the EBV-induced viral disease in patients with IL-27RA deficiency. Furthermore, we identified neutralizing anti-IL-27 autoantibodies in most individuals who developed sporadic infectious mononucleosis and chronic EBV infection. These results demonstrate the critical role of IL-27RA-IL-27 in immunity to EBV, but also the hijacking of this defence by EBV to promote the expansion of infected transformed B cells.


Subject(s)
Epstein-Barr Virus Infections , Interleukin-27 , Receptors, Interleukin , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Young Adult , Alleles , B-Lymphocytes/pathology , B-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/therapy , Finland , Gene Frequency , Herpesvirus 4, Human , Homozygote , Infectious Mononucleosis/complications , Infectious Mononucleosis/genetics , Infectious Mononucleosis/therapy , Interleukin-27/immunology , Interleukin-27/metabolism , Loss of Function Mutation , Receptors, Interleukin/deficiency , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Treatment Outcome
2.
Arch Virol ; 168(7): 178, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37310504

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a high mortality rate. The clinical course is attributed to the severity of pneumonia and systemic complications. In COVID-19 patients and murine models of SARS-CoV-2 infection, the disease may be accompanied by excessive production of cytokines, leading to an accumulation of immune cells in affected organs such as lungs. Previous reports have shown that SARS-CoV-2 infection antagonizes interferon (IFN)-dependent antiviral response, thereby preventing the expression of IFN-stimulated genes (ISGs). Lower IFN levels have been linked to more-severe COVID-19. Interleukin 27 (IL27) is a heterodimeric cytokine composed of IL27p28 and EBI3 subunits, which induce both pro- and anti-inflammatory responses. Recently, we and others have reported that IL27 also induces a strong antiviral response in an IFN-independent manner. Here, we investigated transcription levels of both IL27 subunits in COVID-19 patients. The results show that SARS-CoV-2 infection modulates TLR1/2-MyD88 signaling in PBMCs and monocytes and induces NF-κB activation and expression of NF-κB-target genes that are dependent on a robust pro-inflammatory response, including EBI3; and activates IRF1 signaling which induces IL27p28 mRNA expression. The results suggest that IL27 induces a robust STAT1-dependent pro-inflammatory and antiviral response in an IFN-independent manner in COVID-derived PBMCs and monocytes as a function of a severe clinical course of COVID-19. Similar results were observed in macrophages stimulated with the SARS-CoV-2 spike protein. Thus, IL27 can trigger an antiviral response in the host, suggesting the possibility of novel therapeutics against SARS-CoV-2 infection in humans.


Subject(s)
COVID-19 , Interleukin-27 , Humans , Antiviral Agents/therapeutic use , COVID-19/immunology , Cytokines , Disease Progression , Interleukin-27/immunology , NF-kappa B , SARS-CoV-2
3.
Int Immunopharmacol ; 113(Pt A): 109386, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36461593

ABSTRACT

IL-17D is a new member of the IL-17 family. Currently, it is believed that IL-17D can directly act on immune cells or may indirectly modulate immune responses by regulating cytokine expression. Herein, we hypothesized that IL-17D regulates the expression of chemokines in intestinal epithelial cells, in turn modulating the immune response within intestinal mucosa under hyperoxia. To explore this notion, newborn rats were divided into a hyperoxia group (85 % O2) and control group (21 % O2). Small intestinal tissues were obtained from neonatal rats at 3, 7, 10, and 14 days. Similarly, intestinal epithelial cells were treated by hyperoxia (85 % O2) as the hyperoxia group or were incubated under normal oxygen (21 % O2) as the control group. Finally, intestinal epithelial cells subjected to hyperoxia were treated with recombinant IL-17D and IL-17D antibodies for 24, 48, and 72 h. Immunohistochemistry, western blot, and reverse transcription-quantitative polymerase chain reaction were used to detect the expression levels of chemokines and chemokine receptors in intestinal tissues of newborn rats and intestinal epithelial cells. We found that hyperoxia affected chemokine expression both in vivo and in vitro. Under hyperoxia, IL-17D promoted the expression of CCL2, CCL25, CCL28, and CCR9 in intestinal epithelial cells while downregulating CCR2, CCR5, CCL5, and CCL20. Our findings provide a basis for further study on the effects of hyperoxia-induced intestinal inflammation and intestinal injury.


Subject(s)
Gastroenteritis , Hyperoxia , Interleukin-27 , Intestinal Mucosa , Oxygen , Animals , Rats , Chemokines/immunology , Epithelial Cells/immunology , Gastroenteritis/etiology , Gastroenteritis/immunology , Hyperoxia/complications , Hyperoxia/immunology , Immunologic Factors , Interleukin-27/immunology , Intestinal Mucosa/immunology , Intestines/immunology , Oxygen/toxicity , Receptors, Chemokine/immunology
4.
Cancer Discov ; 12(8): 1960-1983, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35723626

ABSTRACT

Although inflammatory mechanisms driving hepatocellular carcinoma (HCC) have been proposed, the regulators of anticancer immunity in HCC remain poorly understood. We found that IL27 receptor (IL27R) signaling promotes HCC development in vivo. High IL27EBI3 cytokine or IL27RA expression correlated with poor prognosis for patients with HCC. Loss of IL27R suppressed HCC in vivo in two different models of hepatocarcinogenesis. Mechanistically, IL27R sig-naling within the tumor microenvironment restrains the cytotoxicity of innate cytotoxic lymphocytes. IL27R ablation enhanced their accumulation and activation, whereas depletion or functional impairment of innate cytotoxic cells abrogated the effect of IL27R disruption. Pharmacologic neutralization of IL27 signaling increased infiltration of innate cytotoxic lymphocytes with upregulated cytotoxic molecules and reduced HCC development. Our data reveal an unexpected role of IL27R signaling as an immunologic checkpoint regulating innate cytotoxic lymphocytes and promoting HCC of different etiologies, thus indicating a therapeutic potential for IL27 pathway blockade in HCC. SIGNIFICANCE: HCC, the most common form of liver cancer, is characterized by a poor survival rate and limited treatment options. The discovery of a novel IL27-dependent mechanism controlling anticancer cytotoxic immune response will pave the road for new treatment options for this devastating disease. This article is highlighted in the In This Issue feature, p. 1825.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Interleukin-27 , Liver Neoplasms , T-Lymphocytes, Cytotoxic , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/immunology , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Interleukin-27/immunology , Interleukins/immunology , Liver Neoplasms/immunology , Prognosis , Receptors, Interleukin/immunology , Signal Transduction , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
5.
J Invest Dermatol ; 142(8): 2249-2259.e9, 2022 08.
Article in English | MEDLINE | ID: mdl-35007556

ABSTRACT

The skin serves as the interface between the body and the environment and plays a fundamental role in innate antimicrobial host immunity. Antiviral proteins (AVPs) are part of the innate host defense system and provide protection against viral pathogens. How breach of the skin barrier influences innate AVP production remains largely unknown. In this study, we characterized the induction and regulation of AVPs after skin injury and identified a key role of TRPV1 in this process. Transcriptional and phenotypic profiling of cutaneous wounds revealed that skin injury induces high levels of AVPs in both mice and humans. Remarkably, pharmacologic and genetic ablation of TRPV1-mediated nociception abrogated the induction of AVPs, including Oas2, Oasl2, and Isg15 after skin injury in mice. Conversely, stimulation of TRPV1 nociceptors was sufficient to induce AVP production involving the CD301b+ cells‒IL-27‒mediated signaling pathway. Using IL-27 receptor‒knockout mice, we show that IL-27 signaling is required in the induction of AVPs after skin injury. Finally, loss of TRPV1 signaling leads to increased viral infectivity of herpes simplex virus. Together, our data indicate that TRPV1 signaling ensures skin antiviral competence on wounding.


Subject(s)
Antiviral Restriction Factors , Skin , TRPV Cation Channels , Animals , Antiviral Restriction Factors/immunology , Herpes Simplex/immunology , Humans , Immunity, Innate , Interleukin-27/immunology , Mice , Nociceptors/metabolism , Skin/injuries , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
6.
Cell Rep ; 36(8): 109591, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34433030

ABSTRACT

The relationship between B cells and CD4 T cells has been carefully studied, revealing a collaborative effort in which B cells promote the activation, differentiation, and expansion of CD4 T cells while the so-called "helper" cells provide signals to B cells, influencing their class switching and fate. Interactions between B cells and CD8 T cells are not as well studied, although CD8 T cells exhibit an accelerated contraction after certain infections in B-cell-deficient mice. Here, we find that B cells significantly enhance primary CD8 T cell responses after vaccination. Moreover, memory CD8 numbers and function are impaired in B-cell-deficient animals, leading to increased susceptibility to bacterial challenge. We also show that interleukin-27 production by B cells contributes to their impact on primary, but not memory, CD8 responses. Better understanding of the interactions between CD8 T cells and B cells may aid in the design of more effective future vaccine strategies.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Interleukin-27/immunology , Interleukin-27/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Vaccines, Subunit/immunology , Animals , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , Humans , Lymphocyte Count , Mice , Mice, Inbred C57BL , Receptors, Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
7.
Mol Immunol ; 138: 172-180, 2021 10.
Article in English | MEDLINE | ID: mdl-34438225

ABSTRACT

Interleukin-27 (IL-27), a member of the IL-6/IL-12 family, has diverse regulatory functions in various immune responses, and is recognised as a potent agonist and antagonist of CD4+T cells in different contexts. However, this dual role and underlying mechanisms have not been completely defined. In the present review, we summarise the dual role of IL-27 in CD4+T cells. In particular, we aimed to decipher its mechanism to better understand the context-dependent function of IL-27 in CD4+T cells. Furthermore, we propose a possible mechanism for the dual role of IL-27. This may be helpful for the development of appropriate IL-27 treatments in various clinical settings.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interleukin-27/immunology , Animals , Humans
8.
PLoS Negl Trop Dis ; 15(6): e0009473, 2021 06.
Article in English | MEDLINE | ID: mdl-34061845

ABSTRACT

In chronic Chagas disease, Trypanosoma cruzi-specific T-cell function decreases over time, and alterations in the homeostatic IL-7/IL-7R axis are evident, consistent with a process of immune exhaustion. IL-27 is an important immunoregulatory cytokine that shares T-cell signaling with IL-7 and other cytokines of the IL-12 family and might be involved in the transcriptional regulation of T-cell function. Here, we evaluated the expression and function of IL-27R in antigen-experienced T cells from subjects with chronic Chagas disease and assessed whether in vitro treatment with IL-27 and IL-7 might improve T. cruzi-specific polyfunctional T-cell responses. In vitro exposure of PBMCs to T. cruzi induced a downregulation of IL-27R in CD4+ T cells and an upregulation in CD8+ T cells in subjects without heart disease, while IL-27R expression remained unaltered in subjects with more severe clinical stages. The modulation of IL-27R was associated with functional signaling through STAT3 and STAT5 and induction of the downstream genes TBX21, EOMES and CXCL9 in response to IL-27. In vitro treatment of PBMCs with IL-27 and IL-7 improved monofunctional and polyfunctional Th1 responses, accompanied by the induction of IL-10 and Bcl-2 expression in subjects without heart disease but did not improve those in subjects with cardiomyopathy. Our findings support the process of desensitization of the IL-27/IL-27R pathway along with disease severity and that the pro-inflammatory and immunomodulatory mechanisms of IL-27 might be interconnected.


Subject(s)
Chagas Disease/immunology , Interleukin-27/immunology , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , Chagas Disease/genetics , Chagas Disease/parasitology , Chronic Disease , Female , Humans , Interleukin-27/genetics , Interleukin-7/genetics , Interleukin-7/immunology , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Receptors, Interleukin/genetics , Receptors, Interleukin/immunology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/physiology
9.
J Innate Immun ; 13(6): 345-358, 2021.
Article in English | MEDLINE | ID: mdl-34058746

ABSTRACT

Regulation of proinflammatory cytokine expression is critical in the face of single-stranded RNA (ssRNA) virus infections. Many viruses, including coronavirus and influenza virus, wreak havoc on the control of cytokine expression, leading to the formation of detrimental cytokine storms. Understanding the regulation and interplay between inflammatory cytokines is critical to the identification of targets involved in controlling the induction of cytokine expression. In this study, we focused on how the antiviral cytokine interleukin-27 (IL-27) regulates signal transduction downstream of Toll-like receptor 7 (TLR7) and TLR8 ligation, which recognize endosomal single-stranded RNA. Given that IL-27 alters bacterial-sensing TLR expression on myeloid cells and can inhibit replication of single-stranded RNA viruses, we investigated whether IL-27 affects expression and function of TLR7 and TLR8. Analysis of IL-27-treated THP-1 monocytic cells and THP-1-derived macrophages revealed changes in mRNA and protein expression of TLR7 and TLR8. Although treatment with IL-27 enhanced TLR7 expression, only TLR8-mediated cytokine secretion was amplified. Furthermore, we demonstrated that imiquimod, a TLR7 agonist, inhibited cytokine and chemokine production induced by a TLR8 agonist, TL8-506. Delineating the immunomodulatory role of IL-27 on TLR7 and TLR8 responses provides insight into how myeloid cell TLR-mediated responses are regulated during virus infection.


Subject(s)
Interleukin-27/immunology , Macrophages/immunology , Monocytes/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 8/immunology , Cytokines/immunology , Humans , Immunomodulation , Inflammation , RNA, Messenger/metabolism , Signal Transduction , THP-1 Cells , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism
10.
Front Immunol ; 12: 647019, 2021.
Article in English | MEDLINE | ID: mdl-33995365

ABSTRACT

Tuberculosis can occur during any stage of Human Immunodeficiency virus 1 (HIV) -infection including times when CD4+ T cell numbers have reconstituted and viral replication suppressed. We have previously shown that CD11b+CD33+CD14+HLA-DR-/lo monocytic myeloid-derived suppressor cells (MDSC) persist in HIV-infected individuals on combined anti-retroviral therapy (cART) and with virologic suppression. The response of MDSC to Mycobacterium tuberculosis (Mtb) is not known. In this study, we compared the anti-mycobacterial activity of MDSC isolated from HIV -infected individuals on cART with virologic suppression (HIV MDSC) and HIV-uninfected healthy controls (HIV (-) MDSC). Compared to HIV (-) MDSC, HIV MDSC produced significantly less quantities of anti-mycobacterial cytokines IL-12p70 and TNFα, and reactive oxygen species when cultured with infectious Mtb or Mtb antigens. Furthermore, HIV MDSC showed changes in the Toll-like receptor and IL-27 signaling, including reduced expression of MyD88 and higher levels of IL-27. Neutralizing IL-27 and overexpression of MyD88 synergistically controlled intracellular replication of Mtb in HIV MDSC. These results demonstrate that MDSC in fully suppressed HIV-infected individuals are permissive to Mtb and exhibit downregulated anti-mycobacterial innate immune activity through mechanisms involving IL-27 and TLR signaling. Our findings suggest MDSC as novel mediators of tuberculosis in HIV-Mtb co-infected individuals with virologic suppression.


Subject(s)
HIV Infections/immunology , Immunity, Innate/immunology , Monocytes/immunology , Mycobacterium tuberculosis/immunology , Myeloid-Derived Suppressor Cells/immunology , Antiviral Agents/therapeutic use , Coinfection/immunology , Coinfection/microbiology , Coinfection/virology , Cytokines/immunology , Cytokines/metabolism , HIV Infections/drug therapy , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , HIV-1/physiology , Humans , Interleukin-27/immunology , Interleukin-27/metabolism , Monocytes/microbiology , Monocytes/virology , Mycobacterium tuberculosis/physiology , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Myeloid-Derived Suppressor Cells/microbiology , Myeloid-Derived Suppressor Cells/virology , Signal Transduction/immunology , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Tuberculosis/immunology , Tuberculosis/microbiology
11.
Immunity ; 54(4): 673-686.e4, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852831

ABSTRACT

The interleukin (IL)-17 family, consisting of six members, promotes host defense but can in some context promote the development of autoimmune disease. Here, we examined the role of IL-17D, a poorly understood member in the IL-17 family. IL-17D was expressed primarily by colonic epithelial cells. Il17d-/- mice were more susceptible to acute colitis, bacterial infection and experimentally induced colon cancer than their wildtype counterparts. Il17d deficiency impaired IL-22 production by group 3 innate lymphoid cells (ILC3s) and reduced expression of IL-22-dependent antimicrobial peptides, RegIIIß and RegIIIγ, in colon tissue at steady state and in colitis; this was associated with changes in microbial composition and dysbiosis. Protein purification studies revealed that IL-17D bound not canonical IL-17 receptors, but rather CD93, a glycoprotein expressed on mature ILC3s. Mice lacking Cd93 in ILC3s exhibited impaired IL-22 production and aggravated colonic inflammation in experimental colitis. Thus, an IL-17D-CD93 axis regulates ILC3 function to preserve intestinal homeostasis.


Subject(s)
Immunity, Innate/immunology , Interleukin-27/immunology , Lymphocytes/immunology , Membrane Glycoproteins/immunology , Animals , Cell Line , Colitis/immunology , Colon/immunology , Epithelial Cells/immunology , Interleukins/immunology , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Interleukin-22
12.
Scand J Immunol ; 93(2): e12959, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32797730

ABSTRACT

Allergic airway disorders such as asthma and allergic rhinitis are mainly caused by inhaled allergen-induced improper activation and responses of immune and non-immune cells. One important response is the production of IL-27 by macrophages and dendritic cells (DCs) during the early stage of airway allergies. IL-27 exerts powerful modulatory influences on the cells of innate immunity [eg neutrophils, eosinophils, mast cells, monocytes, macrophages, dendritic cells (DCs), innate lymphoid cells (ILCs), natural killer (NK) cells and NKT cells)] and adaptive immunity (eg Th1, Th2, Th9, Th17, regulatory T, CD8+ cytotoxic T and B cells). The IL-27-mediated signalling pathways may be modulated to attenuate asthma and allergic rhinitis. In this review, a comprehensive discussion concerning the roles carried out by IL-27 in asthma and allergic rhinitis was provided, while evidences are presented favouring the use of IL-27 in the treatment of airway allergies.


Subject(s)
Immunologic Factors/immunology , Interleukin-27/immunology , Respiratory System/immunology , Rhinitis, Allergic/immunology , Animals , Asthma/immunology , Dendritic Cells/immunology , Humans
13.
Rheumatology (Oxford) ; 60(7): 3432-3442, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33280050

ABSTRACT

OBJECTIVE: Type 1 regulatory T (Tr1) cells are involved in the pathogenesis of numerous immune-mediated diseases. However, little is known about whether and how Tr1 cells affect the development of IgA vasculitis (IgAV). We aimed to investigate this question in IgAV patients. METHODS: . Tr1 cells in peripheral blood and kidney tissue of IgAV patients were analysed by multi-parametric flow cytometry and immunofluorescence techniques. An in vitro assay of suppression of T cell proliferation and cytokine release was performed to evaluate the function of Tr1 cells. Real-time PCR and cell stimulation in vitro were used to explore the roles of IL-27 and early growth response gene 2 (EGR2). RESULTS: The frequency of Tr1 cells was decreased in peripheral blood but increased in kidney tissue from IgAV patients. A defective suppressive function of Tr1 cells in IgAV was observed. The frequency of Tr1 cells and the cytokines secreted by them were up-regulated in the presence of recombinant IL-27 in vitro. Moreover, IL-27 also increased the expression of EGR2. Furthermore, lower frequency of Tr1 cells during remission had a higher recurrence rate. CONCLUSION: Tr1 cells are involved in the pathogenesis of IgAV. The low IL-27 in IgAV is responsible for impaired frequency and function of Tr1 cells, and EGR2 may be the specific transcription factor involved in the progression. Tr1 may be a risk factor for IgAV recurrence.


Subject(s)
Immunoglobulin A/immunology , Interleukin-27/immunology , T-Lymphocytes, Regulatory/immunology , Vasculitis/immunology , Child , Child, Preschool , Early Growth Response Protein 2/genetics , Female , Humans , Interleukin-10/genetics , Interleukin-27/pharmacology , Interleukins/genetics , Male , RNA, Messenger , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta3/genetics , Vasculitis/genetics
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(6): 2051-2055, 2020 Dec.
Article in Chinese | MEDLINE | ID: mdl-33283741

ABSTRACT

OBJECTIVE: To investigate the effect of IL-27 on Th17 cells in patients with henoch-schönlein purpura(HSP) in order to further elucidate the pathogenesis. METHODS: Fifty patients with HSP treated in our hospital from April 2019 to July 2019 were selected as HSP group, and 30 volunteers underwent physical examination at the same time were selected as control group. The proportion of Th17 cells in peripheral blood of HSP group and healthy control group was determined by flow cytometry (FCM). A total of 27 HSP patients were selected, and candidate peripheral blood mononuclear lymphocytes (PBMC) were co-cultured with exogenous rhIL-27, and the ratio of Th17 cells was detected by flow cytometry. RESULTS: The proportion of Th17 cells in the peripheral blood of HSP patients with acute phase was (1.57±0.54)%, which was significantly higher than that of the control group (0.86±0.40)% (t=-6.298, P<0.001), and the proportion of Th17 cells was decreased significantly after rhIL-27 co-culture (1.39%±0.52% vs 0.98%±0.44%)(P<0.05). CONCLUSION: IL-27 can reduce the level of Th17 cells in patients with HSP, which may be involved in the pathogenic process of HSP and play a protective role in the development of the disease.


Subject(s)
IgA Vasculitis , Interleukin-27 , Th17 Cells/immunology , Humans , IgA Vasculitis/immunology , Interleukin-27/immunology , Leukocytes, Mononuclear
15.
J Immunol ; 205(11): 3122-3129, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33077643

ABSTRACT

IL-17D is a cytokine that belongs to the IL-17 family and is conserved in vertebrates and invertebrates. In contrast to IL-17A and IL-17F, which are expressed in Th17 cells, IL-17D is expressed broadly in nonimmune cells. IL-17D can promote immune responses to cancer and viruses in part by inducing chemokines and recruiting innate immune cells such as NK cells. Although bacterial infection can induce IL-17D in fish and invertebrates, the role of mammalian IL-17D in antibacterial immunity has not been established. To determine whether IL-17D has a role in mediating host defense against bacterial infections, we studied i.p. infection by group A Streptococcus (GAS) in wild-type (WT) and Il17d -/- mice. Compared with WT animals, mice deficient in IL-17D experienced decreased survival, had greater weight loss, and showed increased bacterial burden in the kidney and peritoneal cavity following GAS challenge. In WT animals, IL-17D transcript was induced by GAS infection and correlated to increased levels of chemokine CCL2 and greater neutrophil recruitment. Of note, GAS-mediated IL-17D induction in nonimmune cells required live bacteria, suggesting that processes beyond recognition of pathogen-associated molecular patterns were required for IL-17D induction. Based on our results, we propose a model in which nonimmune cells can discriminate between nonviable and viable GAS cells, responding only to the latter by inducing IL-17D.


Subject(s)
Interleukin-27/immunology , Streptococcal Infections/immunology , Streptococcus/immunology , Animals , Chemokine CCL2/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Th17 Cells/immunology
16.
Int Arch Allergy Immunol ; 181(8): 618-623, 2020.
Article in English | MEDLINE | ID: mdl-32516792

ABSTRACT

The interleukin-17 (IL-17) family is a relatively new family of cytokines consisting of 6 related factors (IL-17A-IL-17F), while the receptor family consists of 5 members: IL-17RA-IL-17RE. IL-17A is the prototype member of this family, which is also the signature cytokine of T helper 17 (Th17) cells. Th17 cells are involved in the development of autoimmune disease, inflammation, and tumors. Although IL-17D is similar to IL-17A in its ability to induce inflammatory cytokine production, there are fewer studies on IL-17D. Recently, the role of IL-17D in tumors and infections has attracted our attention. Some knowledge of function of IL-17D has been gained by studies using nonmammalian species. In this review, we introduce the structural characteristics, expression patterns, and biological characteristics of IL-17D along with its potential function in the pathogenesis of disease.


Subject(s)
Autoimmune Diseases/immunology , Infections/immunology , Inflammation/immunology , Interleukin-17/immunology , Interleukin-27/immunology , Neoplasms/immunology , Th17 Cells/immunology , Animals , Gene Expression , Humans , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-27/genetics , Interleukin-27/metabolism
17.
Int Immunopharmacol ; 84: 106538, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32361567

ABSTRACT

The footprint of cytokines is evident in almost every biological process, such as development, as well as the pathogenesis of the different diseases, immune responses to pathogens, etc. These small proteins are categorized into different functional classes; for instance, they can play a pro-inflammatory or anti-inflammatory role in different situations, or they can confer a polarization to the immune system. Interleukin (IL)-27 is a member of the IL-12 family. Antigen-presenting cells are the primary source of IL-27 production, which exerts its effects by bindings to the IL-27 receptor expressed on the surface of target cells. Interaction of IL-27 and IL-27 receptor leads to activation of the JAK-STAT and p38 MAPK signaling pathways. Most studies focused on the inflammatory effects of this cytokine, but gradually anti-inflammatory effects were also revealed for this cytokine, which changed the traditional perception of the function of this cytokine. The functionality of IL-27 in the pathogenesis of rheumatic diseases has been attributed to a double-blade sword. Hence, novel therapeutic approaches have been devised targeting IL-12 family that has been accompanied with promising results. In this review, we focused on the inflammatory and anti-inflammatory properties of IL-27 in different autoimmune rheumatologic diseases and its plausible therapeutic potentials.


Subject(s)
Autoimmune Diseases/immunology , Interleukin-27/immunology , Rheumatic Diseases/immunology , Animals , Humans , Receptors, Interleukin/immunology , Signal Transduction
18.
Arthritis Rheumatol ; 72(9): 1559-1570, 2020 09.
Article in English | MEDLINE | ID: mdl-32307922

ABSTRACT

OBJECTIVE: Ectopic lymphoid structures (ELS) develop at sites of infection, autoimmunity, and cancer. In patients with Sjögren's syndrome (SS), ELS support autoreactive B cell activation and lymphomagenesis. Interleukin-27 (IL-27) is a key regulator of adaptive immunity and limits Th17 cell-driven pathology. We undertook this study to elucidate the role of IL-27 in ELS formation and function in autoimmunity using a murine model of sialadenitis and in patients with SS. METHODS: ELS formation was induced in wild-type and Il27ra-/- mice via salivary gland (SG) cannulation of a replication-deficient adenovirus in the presence or absence of IL-17A neutralization. In SG biopsy samples, IL-27-producing cells were identified by multicolor immunofluorescence microscopy. Lesional and circulating IL-27 levels were determined by gene expression and enzyme-linked immunosorbent assay. The in vitro effect of IL-27 on T cells was assessed using fluorescence-activated cell sorting and cytokine release. RESULTS: In experimental sialadenitis, Il27ra-/- mice had larger and more hyperactive ELS (focus score; P < 0.001), increased autoimmunity, and an expanded Th17 response (P < 0.001), compared to wild-type mice. IL-17 blockade in Il27ra-/- mice suppressed the aberrant ELS response (B and T cell reduction against control; P < 0.01). SS patients displayed increased circulating IL-27 levels (P < 0.01), and in SG biopsy samples, IL-27 was expressed by DC-LAMP+ dendritic cells in association with CD3+ T cells. Remarkably, in SS T cells (but not in T cells from patients with rheumatoid arthritis or healthy controls), IL-27-mediated suppression of IL-17 secretion was severely impaired and associated with an aberrant interferon-γ release upon IL-27 stimulation. CONCLUSION: Our data indicate that the physiologic ability of IL-27 to limit the magnitude and function of ELS through control of Th17 cell expansion is severely impaired in SS patients, highlighting a defective immunoregulatory checkpoint in this condition.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interleukin-17/immunology , Interleukin-27/immunology , Salivary Glands/immunology , Sjogren's Syndrome/immunology , Tertiary Lymphoid Structures/immunology , Th17 Cells/immunology , Adenoviridae Infections/immunology , Adult , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Female , Gene Expression Profiling , Humans , Interleukin-17/antagonists & inhibitors , Interleukin-27/genetics , Interleukin-27/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Knockout , Middle Aged , RNA, Messenger/metabolism , Receptors, Interleukin/genetics , Salivary Glands/metabolism , Salivary Glands/pathology , Sialadenitis/immunology , Sialadenitis/pathology , Sjogren's Syndrome/pathology , Tertiary Lymphoid Structures/pathology
19.
Adv Exp Med Biol ; 1240: 47-58, 2020.
Article in English | MEDLINE | ID: mdl-32060887

ABSTRACT

Inflammation is recognized as representing a double-edged sword in terms of tumor growth, in some instances contributing to attenuation of growth and in others to enhanced progression and metastasis. Extracellular signals, released by cells within the tumor microenvironment (TME), including cancer cells themselves, as well as infiltrating immune cells, stromal cells, and other components of the extracellular matrix, all can contribute to reshaping the tumor microenvironment (TME) and tumor growth/survival. Most recently, attention has centered on contributions in the TME made by the pro-inflammatory interleukin 17 (IL-17) and the T cells (Th17) and non-T cells which produce this cytokine, as well as the target cells (IL-17 receptor positive, IL-17R+) signaled by IL-17. The IL-17 family itself comprises at least six members, IL-17A, IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25), and IL-17F, all of which are known to be secreted as disulfide-linked homo- or heterodimers. These in turn bind to IL-17R, a type I cell surface receptor, of which at least five variants have been described to date, IL-17RA to IL-17RE. The discussion below focuses on what we know to date about the role of IL-17/IL-17R interactions in the tumor microenvironment in regulation of tumor growth and metastasis and highlights recent ideas concerning the possible utility of this knowledge in the clinic.


Subject(s)
Interleukin-17/immunology , Tumor Microenvironment/immunology , Animals , Humans , Interleukin-27/immunology , Receptors, Interleukin-17/immunology , Th17 Cells/immunology
20.
Front Immunol ; 11: 613007, 2020.
Article in English | MEDLINE | ID: mdl-33488620

ABSTRACT

Background: The PD-1/PD-L1 axis has recently emerged as an immune checkpoint that controls antitumor immune responses also in hematological malignancies. However, the use of anti-PD-L1/PD-1 antibodies in multiple myeloma (MM) patients still remains debated, at least in part because of discordant literature data on PD-L1/PD-1 expression by MM cells and bone marrow (BM) microenvironment cells. The unmet need to identify patients which could benefit from this therapeutic approach prompts us to evaluate the BM expression profile of PD-L1/PD-1 axis across the different stages of the monoclonal gammopathies. Methods: The PD-L1/PD-1 axis was evaluated by flow cytometry in the BM samples of a total cohort of 141 patients with monoclonal gammopathies including 24 patients with Monoclonal Gammopathy of Undetermined Significance (MGUS), 38 patients with smoldering MM (SMM), and 79 patients with active MM, including either newly diagnosed or relapsed-refractory patients. Then, data were correlated with the main immunological and clinical features of the patients. Results: First, we did not find any significant difference between MM and SMM patients in terms of PD-L1/PD-1 expression, on both BM myeloid (CD14+) and lymphoid subsets. On the other hand, PD-L1 expression by CD138+ MM cells was higher in both SMM and MM as compared to MGUS patients. Second, the analysis on the total cohort of MM and SMM patients revealed that PD-L1 is expressed at higher level in CD14+CD16+ non-classical monocytes compared with classical CD14+CD16- cells, independently from the stage of disease. Moreover, PD-L1 expression on CD14+ cells was inversely correlated with BM serum levels of the anti-tumoral cytokine, IL-27. Interestingly, relapsed MM patients showed an inverted CD4+/CD8+ ratio along with high levels of pro-tumoral IL-6 and a positive correlation between %CD14+PD-L1+ and %CD8+PD-1+ cells as compared to both SMM and newly diagnosed MM patients suggesting a highly compromised immune-compartment with low amount of CD4+ effector cells. Conclusions: Our data indicate that SMM and active MM patients share a similar PD-L1/PD-1 BM immune profile, suggesting that SMM patients could be an interesting target for PD-L1/PD-1 inhibition therapy, in light of their less compromised and more responsive immune-compartment.


Subject(s)
B7-H1 Antigen/immunology , Bone Marrow/immunology , Programmed Cell Death 1 Receptor/immunology , Smoldering Multiple Myeloma/immunology , Tumor Microenvironment/immunology , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , Female , Humans , Interleukin-27/immunology , Interleukin-6/immunology , Lipopolysaccharide Receptors/immunology , Male , Middle Aged , Monoclonal Gammopathy of Undetermined Significance/immunology , Monocytes/immunology , Paraproteinemias/immunology , Receptors, IgG/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...